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Adaptive Dynamic Sliding Mode Algorithm for BDFIG 

Control 

M. Ehsani*, A. Oraee**(C.A), B. Abdi*, V. Behnamgol***, and S. M. Hakimi * 

 Abstract: A novel nonlinear controller is proposed to track active and reactive 

power for a Brushless Doubly-Fed Induction Generator (BDFIG) wind turbine. 

Due to nonlinear dynamics and the presence of parametric uncertainties and 

perturbations in this system, sliding mode control is employed. To generate a 

smooth control signal, dynamic sliding mode method is used. Uncertainties bound 

is not required in the suggested algorithm, since the adaptive gain in the controller 

relation is used in this study. Convergence of the sliding variable to zero and 

adaptive gain to the uncertainty bound are verified using Lyapunov stability 

theorem. The proposed controller is evaluated in a comprehensive simulation on 

the BDFIG model. Moreover, output performance of the proposed control 

algorithm is compared to the conventional and second order sliding mode and 

proportional-integral-derivative (PID) controllers. 

 

 
Keywords: Brushless Doubly-Fed Induction Machine, Dynamic Sliding Mode 

Control, Adaptive Gain, Uncertainty. 
 

Nomenclature 
PV Photovoltaic  

Pw,Cw  Power winding, control winding 

, ,r sc spV V V  Voltage of Rotor, Cw, Pw 

, ,r sc sp    Flux of Rotor, Cw, Pw 

, ,r sc spI I I  Current of Rotor, Cw, Pw 

, ,r sc spR R R  Resistance of Rotor, Cw, Pw 

,c pP P  Number of pole pair of Cw, Pw 

, ,r sc sp    Electrical angular velocities of 

Rotor, Cw, Pw 

, ,r sc spL L L  Self-inductance of Rotor, Cw, Pw 

,c pM M  Mutual inductance Cw, Pw 
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,sp spP Q  Active and reactive power of Pw 

1   Introduction 

N recent years, due to climate change much 

attention has been given to exploring 

various economic clean power generation methods. 

This has led to an increase in investigating 

alternative energy sources such as renewable energy. 

Renewable energy systems have made significant 

progress recently, due to the advances in converter 

technology and upgrades to control strategies. 

Furthermore, the Brushless Doubly-fed Induction 

Generator (DFIG) has been greatly investigated due 

to its higher performance at variable wind speeds [1]. 

Brushless DFIG, like other AC machines, are 

controlled by scalar and vector methods. Novelty of 

the vector control method is the independency of 

machine parameters used in [2] for Brushless DFIG 

prototypes.  

When modelling systems, uncertainties may 

arise due to possible unmodulated dynamics and 

neglected nonlinear effects in the linearization of 

equations as well as possible perturbations. To 

control these systems, Sliding Mode Control (SMC) 
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theory can be used, which is specially known for 

nonlinear and uncertain systems [3]. This control 

method has been used for various wind turbines. In 

[4] an integrated sliding mode controller is used to 

eliminate speed errors and counteract the effects of 

disturbances in a brushless doubly-fed machine used 

in a wind turbine. In [5] Sliding mode control 

method has been used to simultaneously achieve 

smooth synchronization with the network and 

flexible adjustment of power when connected to the 

network. In [6] sliding mode control has been used 

to control Brushless DFIG wind turbine for both grid 

and island modes. In addition, predictive SMC was 

utilized in [7] to control active and reactive power of 

this system and controller gains are optimized by 

Particle Swarm Optimization method. SMC is also 

used for a Brushless DFIG in [8]. Due to the use of 

sign function in input relationships of the first-order 

sliding mode control, an oscillation occurs in the 

control signal, which is called chattering 

phenomenon [9]. Chattering is an undesired obstacle 

for implementing first-order SMC. Therefore, 

several methods have been proposed to eliminate the 

effect of chattering to achieve a smooth SMC control 

signal. A simple method to eliminate the effect of 

chattering is to replace a discontinuous function with 

a continuous approximation in boundary layer. 

Another method to eliminate chattering is High-

order SMC (HOSMC). This type of SMC for a DIFG 

was employed in [10]. The well-known second-order 

SMC, super twisting was implemented to control 

Brushless DFIG in [1] and [11]. Disadvantage of 

HOSMC is that they have complex calculations to 

prove stability, and their computational volume is 

much larger than the first-order method. 

To deface the chattering effects, dynamic sliding 

mode control (DSMC) can be used. In the DSMC 

method, the sliding variable is defined in such a way 

that by deriving it, the first derivative of the control 

input appears. Then the derivative of the control 

input is considered as a new control input and is 

designed [12]. In this method, since the derivative of 

control input signal is designed directly, the control 

signal passes through an interceptor applied to the 

system, therefore there are no high frequency 

fluctuations present [13] and [14]. The dynamic 

sliding mode method provides better stability and 

performance in the presence of uncertainties. [15]. In 

addition, dynamic integral sliding mode was 

analyzed in [16]. References [17] and [18] present 

the principles of controller design by fractional order 

dynamic sliding mode control, which has proved to 

reduce the effects of chattering in control signal. In 

[19] improved dynamic sliding mode with higher 

speed in reaching phase was introduced and in [20] 

DSMC with resistance capability in the presence of 

mismatched incompatible uncertainty has been used 

for a DC-DC converter. In [21] an observer-based 

DSMC is presented using a proportional-integral 

sliding surface. Although this method is 

advantageous, however due to the PI consideration 

of the sliding surface, effects of chattering is higher 

in comparison with the conventional method. To 

solve this problem, the sign function is replaced by 

the saturation at the input signal of the discontinuous 

function. Furthermore, this method of removing 

chattering effects, which is similar to continuous 

approximation in a narrow boundary layer, leads to 

a reduction in accuracy levels and does not prove 

stability.  

Another design challenge in SMC is to manage 

system uncertainties. For this purpose, the adaptive 

sliding mode control (ASMC) has been introduced, 

where switching gain is employed to manage 

unknown uncertainties.  

The adaptive sliding mode control basis is 

presented in [22-25]. Although in these studies the 

need for uncertainty upper bound was investigated 

by adaptive method, but the problem of chattering 

has not been resolved . 

The aim of this study is to use a robust nonlinear 

method to control active and reactive powers of the 

Brushless DFIG producing a smooth control signal 

without knowing the upper bound of uncertainties. 

Therefore, the combined adaptive dynamic sliding 

mode control for Brushless DFIG is proposed. 

The structure of the article is as follows. In the 

second part, the mathematical model of BDFIG is 

described. In Section 3, the adaptive dynamic SMC 

theory is explained and used to control this type of 

Brushless DFIG wind turbine. The result of 

simulations is provided in Section 4. Finally, 

conclusions are presented in Section 5. 

2   BDFIG Dynamics Model 

 In this section, the Brushless DFIG equations are 

expressed in d-q coordinates [1] and [26]. The stator 

power winding is rotating at an angular velocity sp  

and the rotor angular velocity is as follows: 

sc sp

r

c pP P

 



=

+
 (1) 

The relationship between flux, voltage and 

current of the power and control sections of the stator 

and rotor is given by : 
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( )( )

( )

sp sp sp sp sp sp

sc sc sc sc

sp p c r sc

r r r r sp p r r

d
v R I j

dt

d
v R I

dt

j p p

d
v R I j p

dt

 

 

 

= +  + 

= + 

+ − + 

= +  + − 

 
(2) 

And the flux relation can be expressed as: 

sp sp sp p r

sc sc sc c r

r r r c sc p sp

L I M I

L I M I

L I M I M I

 = +

 = +

 = + +

 (3) 

The electromagnetic torque is: 

( )

( )

3

2

3
      

2

q d d q

em p p sp r sp r

q d d q

c c sc r sc r

T P M I I I I

P M I I I I

= −

− −

 (4) 

The stator active and reactive power expressions 

are: 

( )

( )

3

2

3

2

d d q q

sp sp sp sp sp

q d d d

sp sp sp sp sp

P v I v I

Q v I v I

= +

= +

 (5) 

The following can be extracted from Eq. (3): 
d

sp p r

sp

sp

r p sp c sc

r

r

M I
I

L

M I M I
I

L

 −
=

 − −
=

 
(6) 

And we conclude from Eqs. (3) and (6): 

2 2

2
      

pr
sp sp r

sp r p sp r p

c p

sc

sp r p

ML
I

L L M L L M

M M
I

L L M

=  + 
− −

+
−

 
(7) 

The substitution of Eq. (6) in Eqs. (3) and (4) 

gives: 

( )

( )

5 4 3

5 4 3

3

2

3

2

q q q

sp sp sp r sc

d d d

sp sp sp r sc

P V I

Q V I

  

  

=  −  +

=  −  +

 
(8) 

2

1 22 2

3 42 2

5 2

,  ,

,  ,

,

sp c sp c

sc

r sp p r sp p

c p p

r sp p r sp p

r

r sp p

L M L M
L

L L M L L M

M M M

L L M L L M

L

L L M

 

 



= = −
− −

= =
− −

=
−

 
(9) 

It can be concluded from the equations above 

that the dynamic relationship between control 

winding current and voltages in the d–q axis is 

determined as follows: 

1 2

1 2 3

1 2

1 2 3

( ( )

       ( ))

( ( )

       ( ))

d d d d

sc sc sc r sc

q q q

sc r sc sp

q q q q

sc sc sc r sc

d d d

sc r sc sp

d
V R I I

dt

I

d
V R I I

dt

I

 

   

 

   

=  +

−  + − 

=  +

+  + − 

 
(10) 

3   Controller Design 

In this section, principle of adaptive dynamic 

sliding mode control theory is explained. Later, this 

controller method is used to control active and 

reactive power of a Brushless DFIG wind turbine. 

3.1   Adaptive Dynamic Sliding Mode Control 

Consider a nonlinear system as: 

( ) ( ) ( )x f x g x u d t= + +  (11) 

where 
nx X R   is a vector of state variables, 

u R  is a control input and ( ) nf x R  is a nonlinear 

function vector-field. Assuming: 

A1. The sliding variable ( , )s s x t R=   is defined in 

such a way that if it is set to zero, the system Eq. (11) 

will behave desirable. 

A2. The relative degree of the sliding variable s(x, t) 

with respect to the control input is equal to one, and 

the internal dynamics of system Eq. (11) are stable. 

Therefore, the input–output dynamics can be 

presented as: 

( ) ( )

( , ) ( , )

s s s
s f x g x u

t x t

a x t b x t u

  
= + +
  

= +

 (12) 

A3. The function ( , )b x t R  is certain and the 

function ( , )a x t R  is expressed as: 

( , ) ( , )a x t a x t d= +  (13) 

where ( , )a x t  and d are known and uncertain 

parts of the ( , )a x t , respectively. Also it is assumed 

that uncertainty is bounded with dd L . 

( , ) ( , )a x t a x t d= +  (13) 

The problem is to design the control input u in 

the presence of uncertainty d to bring s to zero. 
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The standard first-order sliding mode control is 

able to bring the sliding variable to zero in a finite 

time. In conventional sliding mode control the 

control input is selected as follow: 

 
1

( , ) ( )
( , )

u a x t ksign s
b x t

= − −  (14) 

in which k is the reaching term. By defining the 

candidate Lyapunov function as 𝑉 =
1

2
𝑠2, the 

following condition must be established for the finite 

time stabilization of the sliding variable: 

V ss s=  −  (15) 

where 𝜂 is a strictly positive constant, which 

implies that: 

(0)
r

s
t


  (16) 

and tr is the reaching time [27].  

The control input of Eq. (14) contains the 

discontinuous function of the sign that causes 

chattering in the control signal. Using the simple 

method of continuous approximation, this control 

input can be replaced by the following equation: 

1
( , ) ( )

( , )
u a x t ksat s

b x t
= − −    (17) 

In the dynamic sliding mode method, the discrete 

part of the controller is placed under an integrator. 

Therefore, chattering of the control signal will be 

less [17]. To explain this method, consider the 

following nonlinear system: 

1 2

2

1

( ) ( ) ( )

x x

x f x g x u d t

y x

=


= + +
 =

 (18) 

Define the tracking error and the switching 

function as 
de y y= −  and s ce e= +  

respectively where 0c  . Therefore: 

( ) ( ) ( ) ds f x g x u d t y ce= + + − +  (19) 

Now the new sliding variable is defined as 

follows: 

s s = +  (20) 

where 0  . When 0,    0s s = + =  is 

asymptotically stable, therefore, 0e → and 0e → . 

Stability analysis from Eq. (20), is given as 

follows: 

  ( ) ( ) ( ) d

s s

f x g x u d t y ce s

 



= +

= + + − + +
 (21) 

Therefore: 

( )

( )

( )

( ) ( )

( ) ( ) ( ) ( )

      

   ( ) ( ) ( ) ( )

     ( ) ( ) ( )

     ( ) ( ) ( )

   ( ) ( )

     ( ) ( ) ( ) ( )

d

d

d d

f x g x u g x u d t

y ce s

f x g x u g x u d t

y c f x g x u d t y

f x g x u d t y ce

f x c y y d t

c d t g x cg x g x









 

= + + +

− + +

= + + +

− + + + −

+ + + − +

= − + − +

+ + + + +

( )     ( ) ( )

u

c f x g x u ce + + + +

 
(22) 

Dynamic controller is selected as: 

( )

( )

( )

1
( ( )

( )

   ( ) ( ) ( )

   ( ) sgn( ))

d du f x c y y
g x

g x cg x g x u

c f x ce





   

= − + + +

− + +

− + − −

 (23) 

From Eqs. (22) and (23), it is obtained [28]: 

( ) ( ) ( ) sgn( )d t c d t   = + + −  (24) 

Considering that ( ) , ( )d d
d t L d t L  then, Let

( ) dd
L c L  + + , therefore: 

( )

( )

( )

( ) ( ) ( ) sgn( )

    ( ) ( ) ( )

    ( ) 0dd

d t c d t

d t c d t

L c L

    

   

   

= + + −

= + + −

 + + − 

 
(25) 

Determining switching gain at the control inputs 

Eq. (17) and Eq. (23) requires an upper bound of the 

uncertain part. If this parameter is not known, the 

adaptive sliding mode method can be used. This 

method has been introduced in recent years with the 

ability to adaptively adjust the switching gain [25]. 

In this method, the control input is provided Eq. (26) 

for the system in Eq. (12), which does not require the 

uncertainty upper bound. 

( )

0

0

1 ˆ- ( , ) - ( ) ( )
( , )

ˆ( )

0

u a x t k t sign s
b x t

k t k s

k


=




=






 (26) 

Using the system control input Eq. (12) we have: 
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0

ˆ( ) ( ) ( )

ˆ( )

s k t sign s d t

k t k s

 = − +


=

 (27) 

To evaluate stability of the system Eq. (27), 

Lyapunov function is used Eq. (28): 

2 2

0

1 1 ˆ( )
2 2

dV s k L
k

= + −  (28) 

The derivative of this Lyapunov function is: 

( )
0

0

0

1 ˆ ˆ( )

  

1 ˆ   (

0

ˆ ( ) ( )

ˆ (

(

)

ˆ

  

  )

)

d

d

d

d

V s

s ksign s d t

k s

k s d t s s s

d

s k L k
k

k

t s s

L
k

k L

L

−

= + −

=

+ −

= +− −

+

+

= + − 

 (29) 

Therefore, s and ˆ
dk L−  are stable. Using the 

control input Eq. (26), in addition to ensuring the 

convergence of the sliding variable, ˆ( )k t  converges 

to the uncertainty bound [25]. It should be noted that 

the cost of not considering the upper limit of 

uncertainty in the proposed method is spending a 

certain amount of time to converge the adaptive 

interest to the upper limit of uncertainty. 

To take advantage of producing a smooth control 

signal and achieve independency to uncertainty 

bound, combination of dynamic and adaptive 

methods can be used. In this case, the input control 

equation (23) is as follows: 

( )

( )

( )

0 0

1
( ( , ) sgn( ))

( )

ˆ( ) ,        0

( , ) ( )

               ( ) ( ) ( )

               ( )

d d

u x u
g x

t

x u f x c y y

g x cg x g x u

c f x ce

  

   

 



 

= −

= 

= − + + +

− + +

− + −

 (30) 

Because the control input signal is obtained by 

integration from Eq. (30), the oscillations of this 

signal will become smoother after passing through 

the integrator, thus preventing chattering. 

3.2   ADSMC in Brushless DFIG for a Wind 

Turbine 

The given relationship between the control 

winding (CW) and the power winding (PW) are 

obtained as follows: 

54

3 3 3

4

3 3

1.5

1.5

spd d d

sc r spq

sp

spq q

sc rq

sp

Q
I

V

P
I

V



  



 


= +  − 



 = + 



 
(31) 

We have: 

_ 54

3 3 3

_ 4

3 3

1.5

1.5

ref

spd ref d d

sc r spq

sp

ref

spq ref q

sc rq

sp

Q
I

V

P
I

V



  



 


= +  − 





= + 


 
(32) 

Now based on standard sliding mode control 

theory, sliding variables can be introduced as: 

( )

( )

_

_

( )

( )

q q ref

sp sc sc

d d ref

sp sc sc

S P I I

S Q I I

 = −


= −

 (33) 

Then, we have: 

( )

( )

_

_

( )

( )

q q ref

sp sc sc

d d ref

sp sc sc

S P I I

S Q I I

 = −


= −

 (34) 

According to Eq. (10), the derivative of currents 

( ),d q

sc scI I  can be calculated as follows: 

2 2

1
1 2

2 2

2 2

1
1 2 3

2 2

( )

          ( )

( )

        ( )

d
d dsc sc
sc sc

q q dsc
r sc r

q
q qsc sc
sc sc

d d d qsc
r sc sp r

V Rd
I I

dt

I

V Rd
I I

dt

I

 

 
 

 

 

 
  

 


= −




+  + − 


 = −




+  + −  − 



 
(35) 

Using Eq. (35) in Eq. (34): 

2 2

1 2 3

2

_1

2

2 2

1 2

2

_1

2

( )

            ( )

            ( )

( )

            ( )

           (

q
qsc sc

sp sc

d d dsc
r sc sp

q q ref

r sc P P P

d
dsc sc

sp sc

q qsc
r sc

d d ref

r sc Q Q Q

V R
S P I

I

I b u d t

V R
S Q I

I

I b u d

 


  







 


 







= −

+  + − 

−  − = +

= −

+  +

−  − = + )t





















 
(36) 
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Where: 

2

1
Pb


= , q

P scu V= , 

2

1
Qb


= , 

d

Q scu V= , 

1 2 3

2 2

_1

2

( ) ( )q d d dsc sc
P sc r sc sp

q q ref

r sc

R
d t I I

I


  

 





= − +  + − 

−  −

 

_1
1 2

2 2 2

( ) ( )d q q d d refsc sc
Q sc r sc r sc

R
d t I I I

 
 

  
= − +  + −  − . 

In the convectional sliding mode control, control 

input is chosen as follows: 

1
( ( ))

1
( ( ))

P P sp
P

Q Q sp
Q

u k sign S P
b

u k sign S Q
b

 = −
 

 = −
 

 (37) 

where 
pP d pk L = + and 

QQ d Qk L = + .  

Therefore, by placing the variables, voltage of 

the stator control coil in the d-q coordinate system is 

determined as: 

( ) ( )( )

( ) ( )( )

_

2

_

2

sgn

sgn

P

Q

q q q ref

sc d P sc sc

d d d ref

sc d Q sc sc

V L I I

V L I I

 

 

= − + −

= − + −

 (38) 

Using the continuous approximation method, 

controller Eq. (38) is replaced by a continuous 

equation such as: 

( ) ( )( )

( ) ( )( )

_

2

_

2

P

Q

q q q ref

sc d P sc sc

d d d ref

sc d Q sc sc

V L sat I I

V L sat I I

 

 

= − + −

= − + −

 (39) 

Based on DSMC, a new dynamic switching 

functions is achieved using: 

( ) ( ) ( )

( ) ( ) ( )

SP sp P sp

SP sp Q sp

P S P S P

Q S Q S Q

 

 

= +

= +

 (40) 

Where , 0P Q   . The derivation of Eq. (39) is: 

( )

( )

( ) ( )

          ( )

( ) ( )

          ( )

SP P P P P P

P P P P P P p

SP Q Q Q Q Q

Q Q Q Q Q Q Q

P b u b u d t

b u d t u D

Q b u b u d t

b u d t u D



 



 

= + +

+ + = +

= + +

+ + = +

 
(41) 

Where
P Pb =  

( )( ) ( )p P P P P P P PD b u d t b u d t= + + + ,
Q Qb = , 

and ( )( ) ( )Q Q Q Q Q Q Q QD b u d t b u d t= + + + . 

According to adaptive dynamic sliding mode 

controller is given by: 

( )

( )

0 0

0 0

1
ˆ sgn( ( ))

ˆ ( ) ( ) ,        0

1
ˆ sgn( ( ))

ˆ ( ) ( ) ,        0

P P SP

P

P P SP P

Q Q SP

Q

Q Q SP Q

u P

t P

u Q

t Q

 


   

 


   

= −

= 

= −

= 

 
(42) 

Therefore, by placing the variables, voltage of 

the stator control coil in the d-q coordinate system is 

determined as : 

( ) ( )( )( )
( ) ( )

( ) ( )( )( )
( ) ( )

_ _

2

_ _

0 0

_ _

2

_ _

0 0

ˆ sgn

ˆ ( ) ,    0

ˆ sgn

ˆ ( ) ,    0

q q q ref q q ref

sc P sc sc P sc sc

q q ref q q ref

P P sc sc P sc sc P

d d d ref d d ref

sc Q sc sc Q sc sc

d d ref d d ref

Q Q sc sc Q sc sc Q

V I I I I

t I I I I

V I I I I

t I I I I

  

   

  

   

= − − + −

= − + − 

= − − + −

= − + − 

 

 (43) 

4   Simulation Results 

Performance of the proposed controller has been 

verified using MATLAB simulations and compared 

with PID, conventional and second order SMC 

methods. The required parameters are presented in 

Table 1. In the wind turbine management system, the 

controller is allowed to work from 2 seconds, and in 

8 to 10 seconds, due to a voltage dip, the control 

algorithm is taken out of circuit and the rotor current 

is tracked. 

Table 1 Prototype machine specifications [26]. 

Parameter Value 

Frame size D180 

PW pole-pairs 2 

CW pole-pairs 4 

Natural speed 500 rpm 

Stator slots 48 

Rotor slots 36 

PW rated voltage 240 V (at 50 Hz) 

CW rated voltage 240 V (at 50 Hz) 

PW rated current 7 A 

CW rated current 7 A 

Rated generating torque 100 Nm 

𝐿𝑠𝑝 0.3498 H 

𝐿𝑠𝑐 0.3637 H 

𝐿𝑠𝑝𝑟 0.0031 H 

𝐿𝑠𝑐𝑟 0.0022 H 

𝐿𝑟 4.4521×10-5H 

𝑅𝑠𝑝 2.3 Ω 

𝑅𝑠𝑐 4 Ω 

𝑅𝑟 1.2967×10-4Ω 

J 0.53 kgm2 

B 0.036 Nms 

Rotor design Nested-loop 

Rated generating torque 100 Nm 
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Fig. 1 Current tracking in the d-q coordinates by applying SMC, ADSMC and PID. 

 
Fig. 2 Tracking active power by applying SMC, ADSMC and PID. 

 
Fig. 3 Tracking the reactive power by applying SMC, ADSMC and PID. 

 
Fig. 4 Control signal along the d-axis in d-q coordinates by applying SMC, ADSMC and PID. 

Figure 1 shows the current tracking in the d-q 

coordinates by applying SMC, ADSMC and PID 

controllers. According to the figures, it can be seen 

that all three controllers accurately track the desired 

current values, however the ADSMC and 

conventional SMC have reduced over shoots in 

comparison to the PID controller and chattering 

effects occurs in conventional SMC. 

Fig. 2 and Fig. 3 show tracking of active and 

reactive power by applying SMC, ADSMC and PID 

controllers. When voltage dip is resolved and the 

controller is triggered, the DSMC and standard SMC 

have lower over shoots in comparison to the PID 

controller. 

In Fig. 4 and Fig. 5 the control signals 

commanded by the SMC, the ADSMC and the PID 

controller are plotted. It can be seen that the standard 
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SMC suffers from large amount chattering effects 

making implementation almost impossible. 

However, control signal generated by the ADSMC 

method is smooth. By applying the control signal 

generated by the PID method, the system may be 

damaged and therefore requires saturation of the 

control signal . Also Fig. 6 shows the switching term 

gains in conventional and Adaptive DSMC methods. 

Finally shaft speed and torque by applying SMC, 

ADSMC and PID controllers are plotted in Fig. 7.   

Now performance of the proposed controller has 

been compared with second order SMC method. Fig. 

8 shows the current tracking in the d-q coordinates 

by applying ADSMC and SOSMC controllers. It can 

be seen that all three controllers accurately track the 

desired current values, however the ADSMC have 

reduced over shoots in comparison to the SOSMC 

controller. Chattering effects is removed using both 

control methods. 

 
Fig. 5 Control signal along the q-axis in d-q coordinates by applying SMC, ADSMC and PID. 

 
Fig. 6 Switching term gains in conventional and adaptive SMC methods. 

        
Fig. 7 Shaft speed and torque using SMC, ADSMC and PID.  

       
Fig. 8 Current tracking in the d-q coordinates by applying ADSMC and SOSMC.
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Figures 9 and 10 show tracking of active and 

reactive powers by applying ADSMC and SOSMC 

controllers. When voltage dip is resolved and the 

controller is triggered, the ADSMC has lower over 

shoots in comparison to the SOSMC controller. 

 
Fig. 9 Tracking the active power by applying ADSMC 

and SOSMC. 

 
Fig. 10 Tracking the reactive power by applying 

ADSMC and SOSMC. 

In Fig. 11 and Fig. 12 the control signals 

commanded by the ADSMC and the SOSMC 

controllers are plotted. It can be seen, both 

controllers have no chattering effects making 

implementation possible. The control signal 

generated by ADSMC method has lower amplitude 

in comparison with SOSMC method. It should be 

noted that in the proposed method there is no need to 

know the upper limit of uncertainty. 

 
Fig. 11 Control signal along the d-axis in d-q coordinates 

by applying ADSMC and SOSMC.  

 

 
Fig. 12 Control signal along the q-axis in d-q coordinates 

by applying ADSMC and SOSMC. 

5   Conclusions 

In this paper, an adaptive dynamic sliding mode 

controller was used to control active and reactive 

power for a Brushless DFIG wind turbines. The 

proposed method is a non-linear control strategy and 

due to dynamic characteristics it offers a smooth 

control signal. Moreover, this makes 

implementation of the controller easier unlike the 

conventional widely used sliding mode control. The 

proposed controller is not independent to uncertainty 

bound due to use adaptive switching gains. 

Furthermore, simulation results show that the 

proposed controller generates a smoother control 

signal compared to the conventional SMC and has 

lower overshoots compared to the PID and SOSMC 

methods. In addition, the control signal of the 

proposed controller has significantly lower 

maximum amplitude compared to the PID and 

SOSMC method, particularly at the starting point of 

control system and after the occurrence and 

elimination of the voltage dip. 
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